Akira KONAKA TRIUMF September 21, 2002 @TRIUMF 5YP town hall meeting # The JHF-Kamioka neutrino project - Roadmap of the neutrino physics - The JHF-Kamioka project - Long baseline neutrino activities in Canada - TRIUMF experties and possible contributions - Summary # Impact of the discovery of neutrino mass • Small ν mass \rightarrow new physics scale $$\frac{m_{\nu_3}}{m_{\tau}} = \frac{\sqrt{3 \times 10^{-3} eV^2}}{1.3 GeV} = 4 \times 10^{-11}$$ ⇒ Grand Unification and/or extra dimensions # • Grand Unification (GUT) Gauge Unification at $10^{16} GeV$ Baryon asymmetry of the universe ⇒ Majorana neutrino decay in GUT(Leptogenesis) • Extra dimensions in space-time (string theory) Gravity and quantum mechanics \Rightarrow extra dimensions (string) ## Grand Unification and neutrinos ## • See-saw mechanism **Majorana mass:** ν_R is GUT singlet $\Rightarrow M_R \sim M_{GUT}$ **Dirac mass:** $m_D \nu_L \nu_R$ by Higgs $\Rightarrow m_D \sim v = 250 GeV$ $$(\nu_L \ \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} \stackrel{\text{diagonilize}}{\Rightarrow} m_{\nu} = \frac{m_D^2}{M_R}$$ $$m_{\nu}^2 = 3 \times 10^{-3} \Rightarrow M_{GUT} \sim M_R = \frac{m_D^2}{m_{\nu}} \sim 5 \times 10^{15} GeV$$ Consistent with the Gauge unification! # • **GUT** explored by neutrinos - ν mass $\Rightarrow M_R$: energy scale of GUT - CP violation ⇒ Leptogenesis ## Extra-dimensions and neutrinos • Extra Dimensions implied by ν mass $\nu_R(\text{singlet})$ in the bulk space \Rightarrow small overlap between ν_R and $\nu_L \equiv$ small ν mass - Extra dimensions explored by neutrinos - Oscillation pattern \equiv interaction between ν_R and ν_L Explore extra-dimensional space by neutrino oscillation - CPT violation: $\Delta m_{\nu} \neq \Delta m_{\bar{\nu}}$? \Leftarrow Due to break down of Lorenz invariance? - Sterile neutrinos (K-K mode)? - \Rightarrow Comparison between NC and CC, Unitarity test # Physics of neutrino oscillations # • Neutrino oscillation in 2 generations $$P(\nu_e \to \nu_\mu) = |sin\theta cos\theta(e^{-iE_1t} - e^{-iE_2t})|^2$$ $$= sin^2 2\theta sin^2 \frac{1.27\Delta m^2 L(km)}{E(GeV)}$$ $$\Delta m^2 (eV^2)$$ L(km)/E(GeV) Atmospheric $\sim 3 \times 10^{-3}$ 1300 Solar (LMA) $\sim 5 \times 10^{-5}$ 10⁵ LSND ~ 1 4 # 3 generation effect # • Lepton mixing matrix (MNS matrix) $$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \quad \begin{array}{c} \text{Leptonic CKM} \\ \text{(MNS matrix)} \end{pmatrix}$$ $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ $$Atmospheric \qquad New \qquad Solar$$ #### • Golden neutrino oscillation mode # "Road-map" of Neutrino oscillations # 1. LSND: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at $\Delta m^{2} \sim 1 eV^{2}$ #### • Status: - LSND-DAR: $P = (0.264 \pm 0.067 \pm 0.045)\%$ - KARMEN: no excess, some parameter space left. - Beyond 3 generation MNS matrix: CPT violation? - Next Step: mini-BooNE (June, 02) - (a) mini-BooNE $(\nu_{\mu}, \bar{\nu}_{\mu})$ does not see the oscillation \Rightarrow the case closed - (b) Surprise: mini-BooNE does see the oscillation ⇒ Follow-up experiments to study this. ## 2. $\Delta m_{12}, \theta_{12}$: Solar #### • Status: - Deficit is observed by Ga, Cl, H_2O, D_2O experiments - Flavor oscillation is confirmed by SNO (> 5σ) - LMA is favoured (99.5%CL) - Next Step: KamLAND:reactor $\bar{\nu}_e \to \bar{\nu}_\mu$ (Jan. 02) - (a) KamLAND confirms LMA signal - ⇒ Precise oscill. pattern measurement (KamLAND) - \Rightarrow Spectral distortion in LMA (7Be : Borexino, KamLAND) - \Rightarrow Study of the solar model (${}^{7}Be$, p-p neutrinos) - (b) Surprise: KamLAND do not see oscillation - \Rightarrow ⁷Be: Borexino, KamLAND ## 3. Δm_{23} , θ_{23} : Atmospheric #### • Status: - Deficit up/down asymm. observed by Super-K - Consistent with $\nu_{\mu} \rightarrow \nu_{\tau}$ (Super-K) - Confirmed (99.3%CL) by K2K-I - Oscillation pattern seen at 85%CL (K2K-I) ## • Next Step: ``` \nu_{\mu} disappearance: K2K-II(Nov. 02)/MINOS(2005) \nu_{\mu} \rightarrow \nu_{\tau} appearance: ICARUS/OPERA(2006) ``` - (a) Confirmation of the SK/K2K-I results - \Rightarrow Precision test of the oscillation framework oscill. pattern, NC/CC, CPT \Leftarrow **JHF-SK(2007)** - (b) Surprise: Disagreement with SK/K2K-I - \Rightarrow Precise and high statistics \Leftarrow **JHF-SK** # 4. Δm_{13} , θ_{13} : "The next step" #### • Status: Reactor ν_e disappearance (CHOOZ): $\sin^2 2\theta_{13} < 0.1$ # • Nest step: $\nu_{\mu} \rightarrow \nu_{e}$ appearance (**JHF-SK**, NuMI off-axis) #### • Future: - CP High intensity/large detector JHF-HyperK, and similar ones in US/Europe - Matter effect: Very long baseline JHF-Korea, BNL-Homestake, FNAL-SK #### • Further down the road: Neutrino factory, β neutrino beam # Letter of Intent: June 5, 2001 (hep-ex/0106019) ## The JHF-Kamioka neutrino project Y. Itow¹, T. Kajita¹, K. Kaneyuki¹, M. Shiozawa¹, Y. Totsuka¹, Y. Hayato², T. Ishida², T. Ishii², T. Kobayashi², T. Maruyama², K. Nakamura², Y. Obayashi², Y. Oyama², M. Sakuda², M. Yoshida², S. Aoki³, T. Hara³, A. Suzuki³, A. Ichikawa⁴, T. Nakaya⁴, K. Nishikawa⁴, T. Hasegawa⁵, K. Ishihara⁵, A. Suzuki⁵, A. Konaka⁶ #### Abstract The JHF-Kamioka neutrino project is a second generation long base line neutrino oscillation experiment that probes physics beyond the Standard Model by high precision measurements of the neutrino masses and mixing. A high intensity narrow band neutrino beam is produced by secondary pions created by a high intensity proton synchrotron at JHF (JAERI). The neutrino energy is tuned to the oscillation maximum at ~1 GeV for a baseline length of 295 km towards the world largest water Čerenkov detector, Super-Kamiokande. Its excellent energy resolution and particle identification enable the reconstruction of the initial neutrino energy, which is compared with the narrow band neutrino energy, through the quasi-elastic interaction. The physics goal of the first phase is an order of magnitude better precision in the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation measurement $(\delta(\Delta m_{23}^2) = 10^{-4} \text{ eV}^2 \text{ and } \delta(\sin^2 2\theta_{23}) = 0.01)$, a factor of 20 more sensitive search in the $\nu_{\mu} \rightarrow \nu_{e}$ appearance ($\sin^{2} 2\theta_{\mu e} \simeq 0.5 \sin^{2} 2\theta_{13} > 0.003$), and a confirmation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation or discovery of sterile neutrinos by detecting the neutral current events. In the second phase, an upgrade of the accelerator from 0.75 MW to 4 MW in beam power and the construction of 1 Mt Hyper-Kamiokande detector at Kamioka site are envisaged. Another order of magnitude improvement in the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation sensitivity, a sensitive search of the CP violation in the lepton sector (CP phase δ down to $10^{\circ} - 20^{\circ}$), and an order of magnitude improvement in the proton decay sensitivity is also expected. $^{^{\}rm 1}$ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ² Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), Tsukuba, Ibaraki 305-0801, Japan $^{^3}$ Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan ⁶ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada, V6T 2A3 # The JHF project JAERI@Tokai (60km N.E. of KEK) Under construction: Beam commissioning in 2006 | | JHF | MINOS | K2K | |--------------------------|-------|-------|--------| | E(GeV) | 50 | 120 | 12 | | Intensity $(10^{12}ppp)$ | 330 | 40 | 6 | | Rate (Hz) | 0.292 | 0.53 | 0.45 | | Power (MW) | 0.77 | 0.41 | 0.0052 | # $10^{21} POT/year$ Beam power is anticipated to be upgraded up to 4MW (upgrades in RF/power supplies and the barrier bucket scheme) # Principles of the JHF-Kamioka project Discovery of Z^0 (SPS) - \Rightarrow Precision measurements of EW int. at Z^0 pole (LEP) Discovery of ν oscillation (Super-Kamiokande) - \Rightarrow Precision measurements of ν oscil. at oscil. max. - The highest intensity proton accelerator; JHF - The largest water Čerenkov detector; Super-Kamiokande Excellent for $E_{\nu} < 1 GeV$ - Narrow band beam at oscillation max; Off-axis beam L=300km $\Rightarrow E_{\nu}$ =(0.4-1.0)GeV - Reconstruction of the neutrino energy; QE reaction Works best for $0.5 GeV < E_{\nu} < 1 GeV$ # ν_{μ} disappearance ## Physics goal: Test of the oscillation framework • Precise oscillation pattern study - Does ν_{μ} disappearance follow the oscillation curve? Sterile? Extra dimension? New interactions? - Precision measurement of θ_{23} and $\Delta m_{23}^2 \sin^2 2\theta_{23} < 1? \sin^2 2\theta_{23} = 1??$, or $\sin^2 2\theta_{23} > 1???$ - Comparison of θ_{23} and Δm_{23}^2 between ν_{μ} and $\bar{\nu}_{\mu}$ (CPT) - NC/CC ratio: Admixture of sterile neutrinos? Neutrino oscillation has been presenting surprises An excellent place to hunt for new physics # $\nu_{\mu} \rightarrow \nu_{e}$ appearance (U_{e3}) • Signal: $\nu_e(\text{far})/\nu_\mu(\text{near})$ Expected to appear at the ν_μ disappearance dip. • Sensitive to $\sin^2 2\theta_{\mu e} > 0.003$ # Future of JHF-Kamioka - Hyper-Kamiokande detector (The 2nd phase) - -Water Čerenkov technology allows 1M
ton detector - Extend $\sin^2 2\theta_{13}$ down to 10^{-3} - CP violation measurement for $\delta_{CP} > 20^{\circ}$ - $-\times 10$ better sensitivity in proton decay - Detector site identified and R&D started # **Prospects** #### 2000 - • JHF project approved (December) #### 2001 - - JHF construction started (April) - Release of the Letter of Intent (hep-ex/0106019) Conceptual design of the JHF-Kamioka project #### 2002 - - International JHF-SK meeting (March) - Grant request of the ν beamline (June) \Rightarrow approval expected in Dec.2002 or 2003 - Proto-collaboration meeting (September 26-29) - Civil construction of the ν -beamline starts (October) - Updted LOI (December) #### **2006** – • Comissioning of the JHF accelerator #### 2007 - • Start taking data of the first phase of JHF-SK # Participating institutions at JHF-SK meeting in Kyoto on March 9, 2002 # • Japan ICRR, KEK, Kyoto, Tokyo #### • Korea Seoul, Chonnam ## • Canada TRIUMF #### • US Argonne, Boston, Fermilab, Los Alamos, Pennsylvania, Rochester, StonyBrook UC Berkeley/LBNL, UC Irvine, Washington #### • France Lyon, Saclay # • Italy Napoli, Rome, Padova ## • Switzerland Geneva #### • UK Ratherford-Sussex # Physics Opportunities - ν_{μ} disappearance: search for physics beyond MNS - Precise measurement of the oscillation pattern - NC/CC ratio (sterile neutrino search) - CPT (ν_{μ} vs. $\bar{\nu}_{\mu}$ disappearanves - ν_e appearance: $\theta_{13} \Rightarrow$ CP, Matter effect - Precision measurement of ν -nucleon/nucleus scattering - $-\nu$ cross sections for ν oscillation and proton decay - Weak form factors (strangeness in nucleon) - Nuclear/hadron physics - Super-Kamiokande physics - Solar neutrinos - Atmospheric neutrinos - Supernova neutirnos - Proton decays - Short baseline experiment with 2km detector (If mini-BooNE confirms LSND results) - K2K physics # Interests in the community - "High priority" rating in the LRPC report - "Workshop on future opportunities in ν physics" - \Rightarrow Long baseline ν working group formed (\sim 30 members) - \Rightarrow NSERC-IOF grant awarded - \Rightarrow NSERC grant request for the JHF-SK near detector R&D - US Long range plan report to HEPAP The JHF is likely to be the first step in an international program of superbeam facilities... - One of the 4 major topics at the ICFA seminar - Neutrino, Linear collider, Hadron collider, Particle Astrophysics - JHF-SK inspired efforts around the world - Fermilab: NuMI off-axis beam - BNL: Off-axis beam to Homestake off-axis beam - CERN: Off-axis beam to Italy # Activity of the neutrino working group - "High Priority" rating by the FYPC - "Workshop on future opportunities in neutrino physics" - Working group formed in Dec. 2001 - Bi-weekly video/phone meetings and Email discussions - http://nu.triumf.ca - Initial R&D discussion on JHF ν beam - Simulation studies of JHF-SK and NuMI off-axis - NSERC-IOF grant awarded for travel and workshops - International JHF-SK meeting in March in Kyoto - Future NuMI workshop on May2-4 - First internal workshop on May 6 at York university JHF-SK selected as the priority - Long baseline neutrino meeting at CAP on June 3 - The second internal workshop on July 30-31 - JHF-SK proto-collaboration meeting on Sept.26-29 - NSERC grant request on the near detector R&D - The third internal workshop in winter 2002 #### List of members - Peter Kitching^{1,3,4} (Alberta) - John Mcdonald^{1,4} (Alberta) - Jim Pinfold^{1,2} (Alberta) - Manuella Vincter^{1,2,3,4} (Alberta) - Ian Lawson¹ (Guelph) - David Hanna¹ (McGill) - Tony Noble^{1,2,3} (Queens) - Roman Tacik^{1,4} (Regina/TRIUMF) - John Martin^{1,2,3} (Toronto) - Pierre Savard¹ (Toronto) - Garry Levman¹ (Toronto) - Mike Barnes³ (TRIUMF) - Ewart Blackmore^{1,3} (TRIUMF) - Jaap Doornbos^{1,2,3,4} (TRIUMF) - Peter Gumplinger^{1,3} (TRIUMF) - Rich Helmer^{1,2,3,4} (TRIUMF) - Robert Henderson⁴ (TRIUMF) - Fred Jones¹ (TRIUMF) - Akira Konaka^{1,2,3,4} (TRIUMF) - Glen Marshal^{1,2,3} (TRIUMF) - John Macdonald^{1,3} (TRIUMF) - Chris Nell¹ (TRIUMF) - John Ng^{1,2} (TRIUMF) - Art Olin^{1,2} (TRIUMF) - Marcello Pavan¹ (TRIUMF) - Jean-Michael Poutissou^{1,2,3,4}(TRIUMF) - Gary Wait³ (TRIUMF) - Stan Yen^{1,3,4} (TRIUMF) - Bob Kowalewski^{1,3} (Victoria) - Sampa Bhadra^{1,2,3,4} (York) - Scott Menary^{1,2,3} (York) The numbers indicate that the person is on the following member list: - 1. Subscribers of the Canadian long baseline neutrino group - 2. Grantee of the international opportunity funds - 3. Member of the JHF-SK proto-collaboration - 4. Co-applicants of this NSERC SAP Project Research Grant # Canadian JHF-SK activities - Invention of the off-axis beam idea (E889) - Founding member of the JHF-SK project - * ν_e appearance analysis - * Introduction of the off-axis beam and simulation - * CP violation study - Simulation analyses - * Near detector designs - * Optimization of the horn - Facility contributions: model for int. contribution - * Primary beam optics design - * Novel dual kicker concept - * 50GeV accelerator leader's visit in March & September - R&D of the kicker (semiconductor switch) - R&D of the beam dynamics - * Hope to provide 1/3 of foreign contribution (\$50M/3) to maintain the foreign leadership role # Kicker/abort - No fast abort in the original design (Urgent problem) - A novel dual abort kicker concept (TRIUMF,KEK) - Dual kicker will be constructed in 2004 - High power semiconductor switch - Essential in preventing spontaneous mis-firing - General interests in replacing thyratron (e.g. LC) - Proposal by KEK to form a kicker R&D collaboration - Kicker design in FY2002-3 by KEK and TRIUMF - R&D of the switch at TRIUMF in FY2003 R&D equipments to be funded by KEK - Construction in FY2004 in Japan - Test of the kicker elements in FY2004-5 at KEK and TRIUMF - Construction of the spare and upgrade kickers in FY2005-7 - The collaboration beyond R&D is contingent upon fundings of the neutrino beamline and the TRIUMF 5year plan ## • Cost and man power - Total kicker capital cost: $$23M \Rightarrow TRIUMF \text{ share} \sim $11.5M$ - TRIUMF share could be paid by - * Funding the spare and upgrade kicker magnets - * Funding nomal conducting magnets for the ν beam line # Beam pick-up/damper - Feed-back and correct beam instability Essential in achieving high intensity beam - TRIUMF's experties in constructing the system: - Beam dynamics - Damper RF - Beam pick-up monitor - Proposal by KEK to form a beam dynamics R&D collab. - Beam dynamics study of JHF in FY2002-3 - Design study of the dumper system in FY2003-5 R&D to be supported by KEK - Accelerator study and experiment in FY2006 - Construction of the damper system in FY2006-7 by TRIUMF - TRIUMF to be involved in further intensity upgrades Higher repetition rate and injection manipulation - The collaboration beyond R&D is contingent upon fundings of the neutrino beamline and the TRIUMF 5year plan #### • Cost and schedule - Cost of the damper system $\sim 1M$ (2005-7) - Future intensity upgrade contributions \sim \$1M (2008-9) # Primary beamline and shielding - Impacts on the initial design studies - Initial beamline design studies by Doornbos - Scraper design studies important for SC magnets - Design studies of a 30GeV beamline - Possible designing/consultation contributions - Shielding and handling of rad. hard elements - Target/horn design (E889-TRIUMF horn design) - Contribution to the neutrino beamline magnets - -20 Q's (12kG, 1.6m) and 20 B's (20kG, 3.6m) in the arc - To be designed by KEK and constructed in Canada - Capital share of the kicker contribution ## Near detector R&D and construction ## • Fine grained calorimeter - NSERC grant request for R&D - Optimization of the detector config. - Extruded scintillator+shifter fiber - Photon readout system - Mechanical design ## • Contributions expected from TRIUMF - Detector development and construction facility (LADD) - DAQ/Electronics and detector groups - Suport for the engineering design - Beam test at TRIUMF # • Physics impacts - Detailed measurements of the CC and NC cross sections - Understand backgrounds for $\nu_{\mu} \rightarrow \nu_{e}$ appearance - Estimate the normalization factor (Far/Near ratio) - Background study for proton decay #### • Cost and scheudle - Schedule: 2003(R&D), 2004-6(construction) - Cost: \sim \$5-10M (NSERC) | Item | FY2003 | FY2004 | FY2005 | FY2006 | FY2007 | FY2008 | FY2009 | |------------------|----------------|--------|--------------|--------------------|--------|-----------|--------| | Kicker | 1.0FTE | 1.0FTE | 1.0FTE | 1.0FTE | 1.0FTE | 1.0FTE | 0 | | | 0 | 0 | \$0.5M | \$1.0M | \$1.0M | \$0.5M | 0 | | | R&D and test | | tests | Upgrade/spare cons | | struction | | | Neutrino magnets | 0.1FTE | 0.1FTE | 0.5FTE | 0.5FTE | 0 | 0 | 0 | | | 0 | 0 | \$3.5M | \$3.5M | 0 | 0 | 0 | | | Design by KEK | | Construction | | | | | | Beam dynamics | 0.5FTE | 0.5FTE | 2.0FTE | 3.5FTE | 3.5FTE | 3.0FTE | 3.0FTE | | | 0 | 0 | \$0.1M | \$0.3M | \$0.6M | \$0.5M | \$0.5M | | | R&D and design | | sign | study/construction | | upgrades | | | Total | 1.6FTE | 1.6FTE | 3.5FTE | 5.0FTE | 4.5FTE | 4.0FTE | 3.0FTE | | | 0 | 0 | \$4.1M | \$4.8M | \$1.6M | \$1.0M | \$0.5M | - R&D costs for the kicker and beam dynamics (damper system) in FY2003-4 would be supplied by KEK. - Kicker man power includes contributions from students - Neutrino magnets would be designed by KEK in consultation with TRIUMF | Item | FY2003 | FY2004 | FY2005 | FY2006 | FY2007 | FY2008 | FY2009 | |---------------|--------|--------------------------------------|--------|--------|----------|--------|--------| | Near detector | 0.5FTE | 2.0FTE | 1.5FTE | 1.0FTE | 1.0FTE | 0.5FTE | 0.5FTE | | | 0 | \$0.1M | \$0.1M | 0.1M | 0 | 0 | 0 | | | R&D | $\operatorname{design/construction}$ | | | upgrades | | | - \bullet Detector R&D and construction cost is anticipated from NSERC - Infrastructure support from LADD is anticipated - TRIUMF contribution to part of the construction man power anticipated - Support from NSERC infrastructure grant at Alberta is anticipated (subject to funding) # Summary ## 1. Neutrino oscillation, one of the few main future - Identified by Canadian 5-year plan, HEPAP, ICFA, etc. - Active field with new exciting results every few months - The roadmap is clear: $\theta_{13} \to CP$ with superbeam - Strong appeal to the public and students ## 2. JHF-Kamioka project is the front runner - Right neutrino energy (0.5-1.0GeV) and distance (300km) - Identified by the Canadian neutrino working group - Recognized by the international community - \bullet Funding of ν beamline expected in Dec. 2002 or 2003 # 3. Canadian visibility - Japan (SuperK) and Canada (SNO) lead the field - Order of magnitude smaller than collider experiments - \Rightarrow Bigger impact by the Canadian group - Canadians have been involved from the very beginning - Off-axis beam idea - $-\nu_e$ appearance analysis - CP violation study - Primary beam transport and dual abort kicker # 4. Excellent candidate for the TRIUMF 5-year plan - Excellent and timely physics opportunity - Good match with TRIUMF experties - Support from Canadian subatomic physics community - Highly visible and appealing to the public and students